Semantic Models for Question Answering

نویسندگان

  • Piero Molino
  • Pasquale Lops
چکیده

The research presented in this paper focuses on the adoption of semantic models for Question Answering (QA) systems. We propose a framework which exploits semantic technologies to analyze the question, retrieve and rank relevant passages. It exploits: (a) Natural Language Processing algorithms for the analysis of questions and candidate answers both in English and Italian; (b) Information Retrieval (IR) probabilistic models for retrieving candidate answers and (c) Machine Learning methods for question classification. The data source for the answers is an unstructured text document collection stored in search indices. The aim of the research is to improve the system performances by introducing semantic models in every step of the answering process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosting Passage Retrieval through Reuse in Question Answering

Question Answering (QA) is an emerging important field in Information Retrieval. In a QA system the archive of previous questions asked from the system makes a collection full of useful factual nuggets. This paper makes an initial attempt to investigate the reuse of facts contained in the archive of previous questions to help and gain performance in answering future related factoid questions. I...

متن کامل

Question Answering Based on Distributional Semantics

An NLP application for question answering provides an insight into computer’s understanding of human language. Many areas of NLP have recently built on deep learning and distributional semantic representation. This paper seeks to apply distributional semantic models and convolutional neural networks to the question answering task.

متن کامل

Semantic Models for Re-ranking in Question Answering

This paper describes a research aimed at unveiling the role of Semantic Models in Question Answering. In these systems questions and answers are often expressed in quite different languages, so our objective is to bridge this ”lexical chasm” adopting semantic representations. The aim of the research is to find out if Semantc Models are useful for this task and if they can improve the answer re-...

متن کامل

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

Ensemble Approaches for Large-Scale Multi-Label Classification and Question Answering in Biomedicine

This paper documents the systems that we developed for our participation in the BioASQ 2014 large-scale bio-medical semantic indexing and question answering challenge. For the large-scale semantic indexing task, we employed a novel multi-label ensemble method consisting of support vector machines, labeled Latent Dirichlet Allocation models and meta-models predicting the number of relevant label...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012